FEM FOR HEAT TRANSFER PROBLEMS دانشگاه صنعتي اصفهان- دانشكده مكانيك

Size: px
Start display at page:

Download "FEM FOR HEAT TRANSFER PROBLEMS دانشگاه صنعتي اصفهان- دانشكده مكانيك"

Transcription

1 FEM FOR HE RNSFER PROBLEMS 1

2 Fild problms Gnral orm o systm quations o D linar stady stat ild problms: For 1D problms: D D g Q y y (Hlmholtz quation) d D g Q d

3 Fild problms Hat transr in D in h h ( D D ) ( ) y q y t t Hat conduction Hat convctction Hat supply y t t Not: h h, g Q q t t z Hat convction on th surac 3

4 Fild problms Hat transr in long D body q y y Not: Hat supply Hat conduction t=1 y z D =, D y = y, g = and Q = q Rprsntativ plan 4

5 Fild problms Hat transr in 1D in d hp hp q d Hat conduction Hat convctoin Hat supply Not: D, g hp, Q q hp P 5

6 Fild problms Hat transr across composit wall d d Hat conduction q Hat supply Hat convction y Hat convction Not: D, g, Q q 6

7 Fild problms orsional dormation o bar 1 1 G G y ( - strss unction) Not: D =1/G, D y =1/G, g=, Q= Idal irrotational luid low y y Not: D = D y = 1, g = Q = ( - stramlin unction and - potntial unction) 7

8 Fild problms ccoustic problms P P w P y c Not: w g, D c = D y = 1, Q = P - th prssur abov th ambint prssur ; w - wav rquncy ; c - wav vlocity in th mdium 8

9 Wightd Rsidual pproach For FEM Establishing FE quations basd on govrning quations without nowing th unctional. D D g Q y y pproimat solution: ( (, y)) (Strong orm) w ( (, y ))d d y (Wa orm) Wight unction 9

10 Wightd Rsidual pproach For FEM Discrtiz into smallr lmnts to nsur bttr approimation In ach lmnt, (, y) N(, y) Φ whr N N1 N1 N n d 3 Using N as th wight unctions 1 Galrin mthod R N ( (, y))ddy Rsiduals ar thn assmbld or all lmnts and norcd to zro. 1

11 1D Hat ransr Problms 1D in d hp hp q d Hat conduction Hat convctoin Hat supply (Spciid boundary condition) : thrmal conductivity h : convction coicint : cross-sctional ara o th in P : primtr o th in : tmpratur, and : ambint tmpratur in th luid d h b d (Convctiv hat loss at r nd) 11

12 1D in Using Galrin approach, R j d N D g Q d i d d 1D Hat ransr Problms j j N D Q d g d N i i d whr; D =, g = hp, and Q = hp + q (1) 1 i (i) j (n) n+1 (i) 1 i j

13 1D in 1D Hat ransr Problms Intgration by parts o irst trm on right-hand sid, j j j d dn d j R N D D d Q d g d d i d d N N i i i Using ( ) N( ) j d j dn dn R N D ( D d ) d i d d i D j j ( QN d ) ( gn Nd ) i b i Q g 13

14 1D Hat ransr Problms 1D in R b [ ] whr D g Q ( ) j d d N N j d D D B DB d i d d i B d N d (Strain matri) (hrmal conduction) g i j gn Nd (hrmal convction) Q i j QN d (Etrnal hat supplid) b N D d d i j (mpratur gradint at two nds o lmnt) 14

15 1D Hat ransr Problms 1D in For linar lmnts, j i N ( ) Ni N j l l (Rcall 1D truss lmnt) B dn d j i 1 1 d d l l l l E hror, or truss lmnt l 1 j l (Rcall stinss D D d i 1 l l l 1 1 matri o truss lmnt) l 15

16 1D in 1D Hat ransr Problms j j l j 1 i hpl g g d i l l 6 1 i l lor truss lmnt (Rcall mass matri o truss lmnt) Q j j l Ql 1 l 1 Q d ( q hp ) i 1 1 i Hat supply Hat convction l 16

17 1D in b 1D Hat ransr Problms d d j d d i N D d d i d d i d j d j b L br or b b b L R (Lt nd) (Right nd) t th intrnal nods o th in, b L () and b R () vanish upon assmbly. t boundaris, whr tmpratur is prscribd, no nd to calculat b L () or b R () irst. 17 (n1) i1 i1 (n1) i d D d i 1 d D d i (n) i i+1 i (n) i+1 d D d i d D d i 1

18 1D Hat ransr Problms 1D in Whn thr is hat convction at boundary,.g. b R d hb d h h b j h Sinc b is th tmpratur o th in at th boundary point, b = j hror, b i R h j h M s 18

19 1D Hat ransr Problms 1D in b R M s whr M h, s h For convction on lt sid, b L M s whr h M, s h 19

20 1D Hat ransr Problms 1D in hror, [ ] D g M Q S R R Rsiduals ar assmbld or all lmnts and norcd to zro: Ku = F sam orm or static mchanics problm

21 1D Hat ransr Problms 1D in Dirct assmbly procdur R or R R Elmnt 1: R (1) (1) (1) (1) R (1) (1) (1) (1) 1 1 (1) () 1 3 1

22 1D in Dirct assmbly procdur (Cont d) Elmnt : R () () () () R () () () () 1 3 R : (1) (1) (1) (1) D Hat ransr Problms Considring all contributions to a nod, and norcing to zro (Nod 1) R R : ( ) ( ) (Nod ) (1) (1) (1) (1) () () (1) () R : (Nod 3) () () () () 1 3

23 1D Hat ransr Problms 1D in Dirct assmbly procdur (Cont d) In matri orm: (1) (1) (1) (1) (1) () () (1) () () () () 1 3 (Not: sam as assmbly introducd bor) 3

24 W 3 cm C 1D Hat ransr Problms 1D in ampl: Hat transr in 1D in Calculat tmpratur distribution using FEM. W W 3, h. 1, C cm C cm C 1 cm 8 C 8 cm.4 cm 4 linar lmnts, 5 nods (1) () (3) (4)

25 1D in Elmnt 1,, 3:, ( ) M Elmnt 4:, ( ) M S S not rquird rquird 1D Hat ransr Problms W 3 cm 8 C C W.1 C1 cm cm C h 8 cm (1) () (3) (4).4 cm l 3.4 hpl W.6 C W.93 C h W C hpl h 5.6W.1.4.8W 5

26 1D in For lmnt 1,, 3 1D Hat ransr Problms D 1 1 hpl 1 1,, l g, Q hpl 1 1 1,, For lmnt hpl 1 L h 1 hpl 1 h 6 D g M, Q S

27 1D Hat ransr Problms 1D in * Q Hat sourc (Still unnown) 1 = 8, our unnowns liminat Q * * Q Solving: { } 7

28 Composit wall d d Hat conduction q Hat supply Convctiv boundary: d hb d d hb d 1D Hat ransr Problms at = at = H y ll quations or 1D in still applis cpt and G Q vanish. (1) () (3) Rcall: Only or hat convction 1 1 hror, M l 1 1, 8 S

29 Composit wall 1D Hat ransr Problms ampl: Hat transr through composit wall Calculat th tmpratur distribution across th wall using th FEM. 5 W.1 cm h C C W. cm C C W.6 cm C 5 cm linar lmnts, 3 nods (1) () 1 3 9

30 Composit wall For lmnt 1, L. 1.1 W C W h.11.1 C h W 1 1 L 1 1 h 1D Hat ransr Problms 5 C W.1 cm h C W. cm 5 cm (1) () 1 3 C C W.6 cm C h s 1.5 S 3

31 Composit wall For lmnt, L L W C 1D Hat ransr Problms W.1 cm h C C W. cm C C W.6 cm C Upon assmbly, 5 cm ( ) Q (1) () 1 3 (Unnown but rquird to balanc quations) 31

32 Composit wall 1D Hat ransr Problms W.1 cm h C W. cm C C 5 C W.6 cm C (.1) Solving: cm (1) () 1 3 3

33 D Hat ransr Problms Elmnt quations D D g Q y y 1 3 For on lmnt, R N ( D D )d y g Q y Not: w = N : Galrin approach 33

34 Elmnt quations R N ( D D )d y g Q y D Hat ransr Problms (Nd to us divrgnc thorm to valuat intgral in rsidual.) N N N (Product rul o dirntiation) hror, N N N d ( )d D D D d Divrgnc thorm: ( N )d cosd N d cos d N N D d D D N 34

35 Elmnt quations D Hat ransr Problms nd intgral: d sin d N N D d y D y Dy y N y y y hror, R N D cos Dy sin d y N N D Dy d y y gn d QN d 35

36 Elmnt quations D Hat ransr Problms ( ) N( ) R N D cos Dy sin d y b N N N N D Dy d y y D ( N Nd ) N d g Q g Q 36

37 Elmnt quations D Hat ransr Problms R b [ ] ( ) ( ) ( ) ( ) ( ) ( ) D g Q whr b N D cos Dy sin d y N N N N D D d y y D y g g N Nd Q Q N d 37

38 Elmnt quations D Hat ransr Problms N N N N D D d y y D y D Din D D, y B N N N N 1 N n d B N N N 1 N n d y y y y N y y (Strain matri) B DB D D y N N N N y y D B DB d 38

39 riangular lmnts 3 1 N [ N1 N N3] Not: constant strain matri D 39 D Hat ransr Problms y, B DB d B DB d B DB 1 ( 1, y 1 ) 1 b b b b b c c c c c i i j i i i j i D D y D b i b j b j b j b c i c j c j c j c 4 4 bib bjb b cic c jc c 3 ( 3, y 3 ) 3 (, y ), Ni ai bi ci y 1 ai ( j y y j ) 1 bi ( y j y ) 1 ci ( j ) (or N i = L i )

40 riangular lmnts g N1 gn Nd g N [ N1 N N3]d N 3 N1 N1N N1N 3 g 1 3 d N N N N N N1N3 NN3 N 3.g. 1 1 D Hat ransr Problms Not: L m 1 L n L p 3 d m! n! p! ( m n p (ra coordinats) 1!1!! 1 N1 Nd L1 LL3d (1 1 )! )! hror, g 1 1 g

41 riangular lmnts D Hat ransr Problms Similarly, N L 1 N d d Q i 1 Q Q d Q N j Q L 1 3 N L 3 1 Not: b () will b discussd latr 41

42 Rctangular lmnts N N N N N [ 1 3 4] 3 N N N N (1 )(1 ) (1 )(1 ) (1 )(1 ) (1 )(1 ) D Hat ransr Problms 1 4 B a a a a b b b b y 4 ( 4, y 4 ) 3 ( 3, y 3 ) b a 1 ( 1, y 1 ) (, y ) 4 (1, +1) 3 (1, +1) b a 1 (1, 1) (1, 1) a, y b 4

43 Rctangular lmnts D Hat ransr Problms 1 1 D d ab 11 B DB B DBdd Db 1 1 Da y 1 1 6a 1 1 6b g g d abg 11 N N N Ndd abg N N N N N N N N N N N N N N N N N N N N N N N N N N N N dd g g

44 Rctangular lmnts N1 1 N Q 1 Q Q N d Q N d N 4 1 D Hat ransr Problms Not: In practic, th intgrals ar usually valuatd using th Gauss intgration schm 44

45 Boundary conditions and vctor b () D Hat ransr Problms b b b I B Intrnal Boundary (3) b B b B () nds to b valuatd at boundary p 3 i r q (3) b I () b I 1 j () b I n m Vanishing o b I () 45

46 Boundary conditions and vctor b () D Hat ransr Problms Nd not valuat b B Essntial boundary is nown 1 n n Nd to b concrn with b B () Natural boundary: th drivativs o is nown 46

47 Boundary conditions and vctor b () b D Hat ransr Problms N D cos Dy sin d y Essntial boundary is nown 1 D cos Dy sin Mb S y n n on natural boundary D cos D y sin Mb S y n Hat lu across boundary Natural boundary: th drivativs o is nown 47

48 Boundary conditions and vctor b () Insulatd boundary: D Hat ransr Problms M = S = b B Convctiv boundary condition: q n q h h b n n h b h n M S q c q n q h h b n h b h M S M h S h, 48

49 Boundary conditions and vctor b () Spciid hat lu on boundary: D Hat ransr Problms q n b s M M, S qs S n q n q s n q q q s M= S=q s s n S Positiv i hat lows into th boundary Ngativ i hat lows out o th boundary insulatd 49

50 Boundary conditions and vctor b () For othr cass whrby M, S b N D cos D sind y B y N ( M + S)d b D Hat ransr Problms b N b N ( MN + S)d B ( N MNd ) N Sd M B 5

51 Boundary conditions and vctor b () b B M S D Hat ransr Problms whr N MN d, M S N Sd For a rctangular lmnt, S S N1 N 1 N SN d S a 1 N3 d Sa 1 1 d Sa y b 4 ( 4, y 4 ) (Equal sharing btwn nods 1 and ) 3 ( 3, y 3 ) a 1 ( 1, y 1 ) (, y )

52 D Hat ransr Problms Boundary conditions and vctor b () Equal sharing valid or all lmnts with linar shap unctions S,3 1 Sb 1 S,34 Sa 1 1 S,1 4 1 Sb 1 y, 3 ( 3, y 3 ) 3 pplis to triangular lmnts too 1 ( 1, y 1 ) 1 (, y ), S,1 SL 1 S,3 SL S,13 SL 1 1 5

53 Boundary conditions and vctor b () M or rctangular lmnt N1N N NN3 NN4 M M N 1 N 3 N N 3 N 3 N 3 N 4 N1N4 NN4 N3N4 N4 D Hat ransr Problms N N N N N N N d N N N d NN1 N M,1 am 1 53

54 Boundary conditions and vctor b () N d NN d Nd 1 1 M,3 d d d M b 6 1 M a M,34 M, D Hat ransr Problms M,1 1 M b 6 1 am ( am ) Shard in ratio /6, 1/6, 1/6, /6

55 Boundary conditions and vctor b () Similar or triangular lmnts D Hat ransr Problms ML 1 ij M, i j 1 M, j 6 ML 6 j 1 1 M, i ML 6 i

56 Point hat sourc or sin Prrably plac nod at sourc or sin D Hat ransr Problms F i j Q * 1 * j Q 56

57 D Hat ransr Problms Point hat sourc or sin within th lmnt y Point sourc/sin Q Q N d X y Q Q Q Y (Dlta unction) Ni Q N j X y Y dd y N i Q * (X, Y ) j Q N X, Y i Q N j X, Y N X, Y 57

58 Fild problms SUMMRY D D y g Q y t t y h h Sourc and sin R b [ ] ( ) b N D g M Q * S Only or lmnts on th drivativ boundary D cos Dy sind y h M b h S Q y n 58

Finite element discretization of Laplace and Poisson equations

Finite element discretization of Laplace and Poisson equations Finit lmnt discrtization of Laplac and Poisson quations Yashwanth Tummala Tutor: Prof S.Mittal 1 Outlin Finit Elmnt Mthod for 1D Introduction to Poisson s and Laplac s Equations Finit Elmnt Mthod for 2D-Discrtization

More information

AS 5850 Finite Element Analysis

AS 5850 Finite Element Analysis AS 5850 Finit Elmnt Analysis Two-Dimnsional Linar Elasticity Instructor Prof. IIT Madras Equations of Plan Elasticity - 1 displacmnt fild strain- displacmnt rlations (infinitsimal strain) in matrix form

More information

Direct Approach for Discrete Systems One-Dimensional Elements

Direct Approach for Discrete Systems One-Dimensional Elements CONTINUUM & FINITE ELEMENT METHOD Dirct Approach or Discrt Systms On-Dimnsional Elmnts Pro. Song Jin Par Mchanical Enginring, POSTECH Dirct Approach or Discrt Systms Dirct approach has th ollowing aturs:

More information

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis Middl East Tchnical Univrsity Dpartmnt of Mchanical Enginring ME Introduction to Finit Elmnt Analysis Chaptr 5 Two-Dimnsional Formulation Ths nots ar prpard by Dr. Cünyt Srt http://www.m.mtu.du.tr/popl/cunyt

More information

COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS

COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS COMPUTTIONL NUCLER THERML HYDRULICS Cho, Hyoung Kyu Dpartmnt of Nuclar Enginring Soul National Univrsity CHPTER4. THE FINITE VOLUME METHOD FOR DIFFUSION PROBLEMS 2 Tabl of Contnts Chaptr 1 Chaptr 2 Chaptr

More information

Finite Element Models for Steady Flows of Viscous Incompressible Fluids

Finite Element Models for Steady Flows of Viscous Incompressible Fluids Finit Elmnt Modls for Stad Flows of Viscous Incomprssibl Fluids Rad: Chaptr 10 JN Rdd CONTENTS Govrning Equations of Flows of Incomprssibl Fluids Mid (Vlocit-Prssur) Finit Elmnt Modl Pnalt Function Mthod

More information

Chapter 5. Introduction. Introduction. Introduction. Finite Element Modelling. Finite Element Modelling

Chapter 5. Introduction. Introduction. Introduction. Finite Element Modelling. Finite Element Modelling Chaptr 5 wo-dimnsional problms using Constant Strain riangls (CS) Lctur Nots Dr Mohd Andi Univrsiti Malasia Prlis EN7 Finit Elmnt Analsis Introction wo-dimnsional init lmnt ormulation ollows th stps usd

More information

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis Middl East Tchnical Univrsity Dpartmnt of Mchanical Enginring ME 43 Introduction to Finit Elmnt Analysis Chaptr 3 Computr Implmntation of D FEM Ths nots ar prpard by Dr. Cünyt Srt http://www.m.mtu.du.tr/popl/cunyt

More information

VSMN30 FINITA ELEMENTMETODEN - DUGGA

VSMN30 FINITA ELEMENTMETODEN - DUGGA VSMN3 FINITA ELEMENTMETODEN - DUGGA 1-11-6 kl. 8.-1. Maximum points: 4, Rquird points to pass: Assistanc: CALFEM manual and calculator Problm 1 ( 8p ) 8 7 6 5 y 4 1. m x 1 3 1. m Th isotropic two-dimnsional

More information

Section 11.6: Directional Derivatives and the Gradient Vector

Section 11.6: Directional Derivatives and the Gradient Vector Sction.6: Dirctional Drivativs and th Gradint Vctor Practic HW rom Stwart Ttbook not to hand in p. 778 # -4 p. 799 # 4-5 7 9 9 35 37 odd Th Dirctional Drivativ Rcall that a b Slop o th tangnt lin to th

More information

Finite Element Analysis

Finite Element Analysis Finit Elmnt Analysis L4 D Shap Functions, an Gauss Quaratur FEA Formulation Dr. Wiong Wu EGR 54 Finit Elmnt Analysis Roamap for Dvlopmnt of FE Strong form: govrning DE an BCs EGR 54 Finit Elmnt Analysis

More information

3 Finite Element Parametric Geometry

3 Finite Element Parametric Geometry 3 Finit Elmnt Paramtric Gomtry 3. Introduction Th intgral of a matrix is th matrix containing th intgral of ach and vry on of its original componnts. Practical finit lmnt analysis rquirs intgrating matrics,

More information

Derivation of Eigenvalue Matrix Equations

Derivation of Eigenvalue Matrix Equations Drivation of Eignvalu Matrix Equations h scalar wav quations ar φ φ η + ( k + 0ξ η β ) φ 0 x y x pq ε r r whr for E mod E, 1, y pq φ φ x 1 1 ε r nr (4 36) for E mod H,, 1 x η η ξ ξ n [ N ] { } i i i 1

More information

UNIVERSITI TENAGA NASIONAL, M sia. Keywords: Mathematical Modeling; Finite Element Method; Temperature History

UNIVERSITI TENAGA NASIONAL, M sia. Keywords: Mathematical Modeling; Finite Element Method; Temperature History Utilization o Numrical chniqus to Prdict h hrmal Bhavior o Wood Column Subjctd to Fir Part : Using Finit Elmnt Mthods to Dvlop Mathmatical Modl or Wood Column Mohamd ElShayb 1, a, Faisal.Fairag 2, Zolman

More information

Schematic of a mixed flow reactor (both advection and dispersion must be accounted for)

Schematic of a mixed flow reactor (both advection and dispersion must be accounted for) Cas stuy 6.1, R: Chapra an Canal, p. 769. Th quation scribin th concntration o any tracr in an lonat ractor is known as th avction-isprsion quation an may b writtn as: Schmatic o a mi low ractor (both

More information

1 Isoparametric Concept

1 Isoparametric Concept UNIVERSITY OF CALIFORNIA BERKELEY Dpartmnt of Civil Enginring Spring 06 Structural Enginring, Mchanics and Matrials Profssor: S. Govindj Nots on D isoparamtric lmnts Isoparamtric Concpt Th isoparamtric

More information

Numerical methods for PDEs FEM implementation: element stiffness matrix, isoparametric mapping, assembling global stiffness matrix

Numerical methods for PDEs FEM implementation: element stiffness matrix, isoparametric mapping, assembling global stiffness matrix Platzhaltr für Bild, Bild auf Titlfoli hintr das Logo instzn Numrical mthods for PDEs FEM implmntation: lmnt stiffnss matrix, isoparamtric mapping, assmbling global stiffnss matrix Dr. Nomi Fridman Contnts

More information

Elements of Statistical Thermodynamics

Elements of Statistical Thermodynamics 24 Elmnts of Statistical Thrmodynamics Statistical thrmodynamics is a branch of knowldg that has its own postulats and tchniqus. W do not attmpt to giv hr vn an introduction to th fild. In this chaptr,

More information

NONLINEAR ANALYSIS OF PLATE BENDING

NONLINEAR ANALYSIS OF PLATE BENDING NONLINEAR ANALYSIS OF PLATE BENDING CONTENTS Govrning Equations of th First-Ordr Shar Dformation thor (FSDT) Finit lmnt modls of FSDT Shar and mmbran locking Computr implmntation Strss calculation Numrical

More information

Nonlinear Bending of Strait Beams

Nonlinear Bending of Strait Beams Nonlinar Bnding of Strait Bams CONTENTS Th Eulr-Brnoulli bam thory Th Timoshnko bam thory Govrning Equations Wak Forms Finit lmnt modls Computr Implmntation: calculation of lmnt matrics Numrical ampls

More information

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis Middl East Tchnical Univrsity Dpartmnt of Mchanical Enginring ME 4 Introduction to Finit Elmnt Analysis Chaptr 4 Trusss, Bams and Frams Ths nots ar prpard by Dr. Cünyt Srt http://www.m.mtu.du.tr/popl/cunyt

More information

Hydrogen Atom and One Electron Ions

Hydrogen Atom and One Electron Ions Hydrogn Atom and On Elctron Ions Th Schrödingr quation for this two-body problm starts out th sam as th gnral two-body Schrödingr quation. First w sparat out th motion of th cntr of mass. Th intrnal potntial

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

MAE4700/5700 Finite Element Analysis for Mechanical and Aerospace Design

MAE4700/5700 Finite Element Analysis for Mechanical and Aerospace Design MAE4700/5700 Finit Elmnt Analysis for Mchanical and Arospac Dsign Cornll Univrsity, Fall 2009 Nicholas Zabaras Matrials Procss Dsign and Control Laboratory Sibly School of Mchanical and Arospac Enginring

More information

Curl, Divergence, Gradient, and Laplacian in Cylindrical and Spherical Coordinate Systems

Curl, Divergence, Gradient, and Laplacian in Cylindrical and Spherical Coordinate Systems A P P E N D I X B Curl, Divrgnc, Gradint, and Laplacian in Cylindrical and Sphrical Coordinat Systms 788 In Chaptr 3, w introducd th curl, divrgnc, gradint, and Laplacian and drivd th xprssions or thm

More information

nd the particular orthogonal trajectory from the family of orthogonal trajectories passing through point (0; 1).

nd the particular orthogonal trajectory from the family of orthogonal trajectories passing through point (0; 1). Eamn EDO. Givn th family of curvs y + C nd th particular orthogonal trajctory from th family of orthogonal trajctoris passing through point (0; ). Solution: In th rst plac, lt us calculat th di rntial

More information

16. Electromagnetics and vector elements (draft, under construction)

16. Electromagnetics and vector elements (draft, under construction) 16. Elctromagntics (draft)... 1 16.1 Introduction... 1 16.2 Paramtric coordinats... 2 16.3 Edg Basd (Vctor) Finit Elmnts... 4 16.4 Whitny vctor lmnts... 5 16.5 Wak Form... 8 16.6 Vctor lmnt matrics...

More information

Calculus II (MAC )

Calculus II (MAC ) Calculus II (MAC232-2) Tst 2 (25/6/25) Nam (PRINT): Plas show your work. An answr with no work rcivs no crdit. You may us th back of a pag if you nd mor spac for a problm. You may not us any calculators.

More information

Math 34A. Final Review

Math 34A. Final Review Math A Final Rviw 1) Us th graph of y10 to find approimat valus: a) 50 0. b) y (0.65) solution for part a) first writ an quation: 50 0. now tak th logarithm of both sids: log() log(50 0. ) pand th right

More information

PHYSICS 489/1489 LECTURE 7: QUANTUM ELECTRODYNAMICS

PHYSICS 489/1489 LECTURE 7: QUANTUM ELECTRODYNAMICS PHYSICS 489/489 LECTURE 7: QUANTUM ELECTRODYNAMICS REMINDER Problm st du today 700 in Box F TODAY: W invstigatd th Dirac quation it dscribs a rlativistic spin /2 particl implis th xistnc of antiparticl

More information

Constants and Conversions:

Constants and Conversions: EXAM INFORMATION Radial Distribution Function: P 2 ( r) RDF( r) Br R( r ) 2, B is th normalization constant. Ordr of Orbital Enrgis: Homonuclar Diatomic Molculs * * * * g1s u1s g 2s u 2s u 2 p g 2 p g

More information

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

Structural Optimization for Transient Response Constraints with Software JIFEX*

Structural Optimization for Transient Response Constraints with Software JIFEX* amang Journal o Scinc and Enginring, Vol. 3, No. 3, pp. 73-86 (2) 73 Structural Optimization or ransint Rspons Constraints with Sotwar JIFEX* Yuanxian Gu, Biaosong Chn, Hongwu Zhang and Shutian Liu Stat

More information

Calculus concepts derivatives

Calculus concepts derivatives All rasonabl fforts hav bn mad to mak sur th nots ar accurat. Th author cannot b hld rsponsibl for any damags arising from th us of ths nots in any fashion. Calculus concpts drivativs Concpts involving

More information

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers: APPM 6 Final 5 pts) Spring 4. 6 pts total) Th following parts ar not rlatd, justify your answrs: a) Considr th curv rprsntd by th paramtric quations, t and y t + for t. i) 6 pts) Writ down th corrsponding

More information

Mathematics. Complex Number rectangular form. Quadratic equation. Quadratic equation. Complex number Functions: sinusoids. Differentiation Integration

Mathematics. Complex Number rectangular form. Quadratic equation. Quadratic equation. Complex number Functions: sinusoids. Differentiation Integration Mathmatics Compl numbr Functions: sinusoids Sin function, cosin function Diffrntiation Intgration Quadratic quation Quadratic quations: a b c 0 Solution: b b 4ac a Eampl: 1 0 a= b=- c=1 4 1 1or 1 1 Quadratic

More information

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA NE APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA Mirca I CÎRNU Ph Dp o Mathmatics III Faculty o Applid Scincs Univrsity Polithnica o Bucharst Cirnumirca @yahoocom Abstract In a rcnt papr [] 5 th indinit intgrals

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

Note If the candidate believes that e x = 0 solves to x = 0 or gives an extra solution of x = 0, then withhold the final accuracy mark.

Note If the candidate believes that e x = 0 solves to x = 0 or gives an extra solution of x = 0, then withhold the final accuracy mark. . (a) Eithr y = or ( 0, ) (b) Whn =, y = ( 0 + ) = 0 = 0 ( + ) = 0 ( )( ) = 0 Eithr = (for possibly abov) or = A 3. Not If th candidat blivs that = 0 solvs to = 0 or givs an tra solution of = 0, thn withhold

More information

Differential Equations

Differential Equations UNIT I Diffrntial Equations.0 INTRODUCTION W li in a world of intrrlatd changing ntitis. Th locit of a falling bod changs with distanc, th position of th arth changs with tim, th ara of a circl changs

More information

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals.

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals. Chaptr 7 Th Hydrogn Atom Background: W hav discussd th PIB HO and th nrgy of th RR modl. In this chaptr th H-atom and atomic orbitals. * A singl particl moving undr a cntral forc adoptd from Scott Kirby

More information

Deepak Rajput

Deepak Rajput Q Prov: (a than an infinit point lattic is only capabl of showing,, 4, or 6-fold typ rotational symmtry; (b th Wiss zon law, i.. if [uvw] is a zon axis and (hkl is a fac in th zon, thn hu + kv + lw ; (c

More information

Calculus Revision A2 Level

Calculus Revision A2 Level alculus Rvision A Lvl Tabl of drivativs a n sin cos tan d an sc n cos sin Fro AS * NB sc cos sc cos hain rul othrwis known as th function of a function or coposit rul. d d Eapl (i) (ii) Obtain th drivativ

More information

That is, we start with a general matrix: And end with a simpler matrix:

That is, we start with a general matrix: And end with a simpler matrix: DIAGON ALIZATION OF THE STR ESS TEN SOR INTRO DUCTIO N By th us of Cauchy s thorm w ar abl to rduc th numbr of strss componnts in th strss tnsor to only nin valus. An additional simplification of th strss

More information

AP PHYSICS C: ELECTRICITY AND MAGNETISM 2015 SCORING GUIDELINES

AP PHYSICS C: ELECTRICITY AND MAGNETISM 2015 SCORING GUIDELINES AP PHYSICS C: ELECTRICITY AND MAGNETISM 2015 SCORING GUIDELINES Qustion 1 15 points total Distribution of points (a) i. For at last on arrow btwn th plats pointing downward from th positiv plats toward

More information

1973 AP Calculus AB: Section I

1973 AP Calculus AB: Section I 97 AP Calculus AB: Sction I 9 Minuts No Calculator Not: In this amination, ln dnots th natural logarithm of (that is, logarithm to th bas ).. ( ) d= + C 6 + C + C + C + C. If f ( ) = + + + and ( ), g=

More information

Partial Derivatives: Suppose that z = f(x, y) is a function of two variables.

Partial Derivatives: Suppose that z = f(x, y) is a function of two variables. Chaptr Functions o Two Variabls Applid Calculus 61 Sction : Calculus o Functions o Two Variabls Now that ou hav som amiliarit with unctions o two variabls it s tim to start appling calculus to hlp us solv

More information

First derivative analysis

First derivative analysis Robrto s Nots on Dirntial Calculus Chaptr 8: Graphical analysis Sction First drivativ analysis What you nd to know alrady: How to us drivativs to idntiy th critical valus o a unction and its trm points

More information

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C Tchniqus of Intgration c Donald Kridr and Dwight Lahr In this sction w ar going to introduc th first approachs to valuating an indfinit intgral whos intgrand dos not hav an immdiat antidrivativ. W bgin

More information

u 3 = u 3 (x 1, x 2, x 3 )

u 3 = u 3 (x 1, x 2, x 3 ) Lctur 23: Curvilinar Coordinats (RHB 8.0 It is oftn convnint to work with variabls othr than th Cartsian coordinats x i ( = x, y, z. For xampl in Lctur 5 w mt sphrical polar and cylindrical polar coordinats.

More information

2008 AP Calculus BC Multiple Choice Exam

2008 AP Calculus BC Multiple Choice Exam 008 AP Multipl Choic Eam Nam 008 AP Calculus BC Multipl Choic Eam Sction No Calculator Activ AP Calculus 008 BC Multipl Choic. At tim t 0, a particl moving in th -plan is th acclration vctor of th particl

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probability and Stochastic Procsss: A Frindly Introduction for Elctrical and Computr Enginrs Roy D. Yats and David J. Goodman Problm Solutions : Yats and Goodman,4.3. 4.3.4 4.3. 4.4. 4.4.4 4.4.6 4.. 4..7

More information

Sec 2.3 Modeling with First Order Equations

Sec 2.3 Modeling with First Order Equations Sc.3 Modling with First Ordr Equations Mathmatical modls charactriz physical systms, oftn using diffrntial quations. Modl Construction: Translating physical situation into mathmatical trms. Clarly stat

More information

Difference -Analytical Method of The One-Dimensional Convection-Diffusion Equation

Difference -Analytical Method of The One-Dimensional Convection-Diffusion Equation Diffrnc -Analytical Mthod of Th On-Dimnsional Convction-Diffusion Equation Dalabav Umurdin Dpartmnt mathmatic modlling, Univrsity of orld Economy and Diplomacy, Uzbistan Abstract. An analytical diffrncing

More information

Higher-Order Discrete Calculus Methods

Higher-Order Discrete Calculus Methods Highr-Ordr Discrt Calculus Mthods J. Blair Prot V. Subramanian Ralistic Practical, Cost-ctiv, Physically Accurat Paralll, Moving Msh, Complx Gomtry, Slid 1 Contxt Discrt Calculus Mthods Finit Dirnc Mimtic

More information

Analysis of potential flow around two-dimensional body by finite element method

Analysis of potential flow around two-dimensional body by finite element method Vol. 7(2), pp. 9-22, May, 2015 DOI: 10.5897/JMER2014.0342 rticl Numbr: 20E80053033 ISSN 2141 2383 Copyright 2015 uthor(s) rtain th copyright of this articl http://www.acadmicjournals.org/jmer Journal of

More information

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002 3.4 Forc Analysis of Linkas An undrstandin of forc analysis of linkas is rquird to: Dtrmin th raction forcs on pins, tc. as a consqunc of a spcifid motion (don t undrstimat th sinificanc of dynamic or

More information

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation. Lur 7 Fourir Transforms and th Wav Euation Ovrviw and Motivation: W first discuss a fw faturs of th Fourir transform (FT), and thn w solv th initial-valu problm for th wav uation using th Fourir transform

More information

Where k is either given or determined from the data and c is an arbitrary constant.

Where k is either given or determined from the data and c is an arbitrary constant. Exponntial growth and dcay applications W wish to solv an quation that has a drivativ. dy ky k > dx This quation says that th rat of chang of th function is proportional to th function. Th solution is

More information

NARAYANA I I T / P M T A C A D E M Y. C o m m o n P r a c t i c e T e s t 1 6 XII STD BATCHES [CF] Date: PHYSIS HEMISTRY MTHEMTIS

NARAYANA I I T / P M T A C A D E M Y. C o m m o n P r a c t i c e T e s t 1 6 XII STD BATCHES [CF] Date: PHYSIS HEMISTRY MTHEMTIS . (D). (A). (D). (D) 5. (B) 6. (A) 7. (A) 8. (A) 9. (B). (A). (D). (B). (B). (C) 5. (D) NARAYANA I I T / P M T A C A D E M Y C o m m o n P r a c t i c T s t 6 XII STD BATCHES [CF] Dat: 8.8.6 ANSWER PHYSIS

More information

Differentiation of Exponential Functions

Differentiation of Exponential Functions Calculus Modul C Diffrntiation of Eponntial Functions Copyright This publication Th Northrn Albrta Institut of Tchnology 007. All Rights Rsrvd. LAST REVISED March, 009 Introduction to Diffrntiation of

More information

Chapter 1. Chapter 10. Chapter 2. Chapter 11. Chapter 3. Chapter 12. Chapter 4. Chapter 13. Chapter 5. Chapter 14. Chapter 6. Chapter 7.

Chapter 1. Chapter 10. Chapter 2. Chapter 11. Chapter 3. Chapter 12. Chapter 4. Chapter 13. Chapter 5. Chapter 14. Chapter 6. Chapter 7. Chaptr Binomial Epansion Chaptr 0 Furthr Probability Chaptr Limits and Drivativs Chaptr Discrt Random Variabls Chaptr Diffrntiation Chaptr Discrt Probability Distributions Chaptr Applications of Diffrntiation

More information

OTHER TPOICS OF INTEREST (Convection BC, Axisymmetric problems, 3D FEM)

OTHER TPOICS OF INTEREST (Convection BC, Axisymmetric problems, 3D FEM) OTHER TPOICS OF INTEREST (Convction BC, Axisymmtric problms, 3D FEM) CONTENTS 2-D Problms with convction BC Typs of Axisymmtric Problms Axisymmtric Problms (2-D) 3-D Hat Transfr 3-D Elasticity Typical

More information

Self-Adjointness and Its Relationship to Quantum Mechanics. Ronald I. Frank 2016

Self-Adjointness and Its Relationship to Quantum Mechanics. Ronald I. Frank 2016 Ronald I. Frank 06 Adjoint https://n.wikipdia.org/wiki/adjoint In gnral thr is an oprator and a procss that dfin its adjoint *. It is thn slf-adjoint if *. Innr product spac https://n.wikipdia.org/wiki/innr_product_spac

More information

Byeong-Joo Lee

Byeong-Joo Lee OSECH - MSE calphad@postch.ac.kr Equipartition horm h avrag nrgy o a particl pr indpndnt componnt o motion is ε ε ' ε '' ε ''' U ln Z Z ε < ε > U ln Z β ( ε ' ε '' ε ''' / Z' Z translational kintic nrgy

More information

Brief Introduction to Statistical Mechanics

Brief Introduction to Statistical Mechanics Brif Introduction to Statistical Mchanics. Purpos: Ths nots ar intndd to provid a vry quick introduction to Statistical Mchanics. Th fild is of cours far mor vast than could b containd in ths fw pags.

More information

The Frequency Response of a Quarter-Wave Matching Network

The Frequency Response of a Quarter-Wave Matching Network 4/1/29 Th Frquncy Rsons o a Quartr 1/9 Th Frquncy Rsons o a Quartr-Wav Matchg Ntwork Q: You hav onc aga rovidd us with conusg and rhas uslss ormation. Th quartr-wav matchg ntwork has an xact SFG o: a Τ

More information

Chemical Physics II. More Stat. Thermo Kinetics Protein Folding...

Chemical Physics II. More Stat. Thermo Kinetics Protein Folding... Chmical Physics II Mor Stat. Thrmo Kintics Protin Folding... http://www.nmc.ctc.com/imags/projct/proj15thumb.jpg http://nuclarwaponarchiv.org/usa/tsts/ukgrabl2.jpg http://www.photolib.noaa.gov/corps/imags/big/corp1417.jpg

More information

5. B To determine all the holes and asymptotes of the equation: y = bdc dced f gbd

5. B To determine all the holes and asymptotes of the equation: y = bdc dced f gbd 1. First you chck th domain of g x. For this function, x cannot qual zro. Thn w find th D domain of f g x D 3; D 3 0; x Q x x 1 3, x 0 2. Any cosin graph is going to b symmtric with th y-axis as long as

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Exercise 1. Sketch the graph of the following function. (x 2

Exercise 1. Sketch the graph of the following function. (x 2 Writtn tst: Fbruary 9th, 06 Exrcis. Sktch th graph of th following function fx = x + x, spcifying: domain, possibl asymptots, monotonicity, continuity, local and global maxima or minima, and non-drivability

More information

DIFFERENTIAL EQUATION

DIFFERENTIAL EQUATION MD DIFFERENTIAL EQUATION Sllabus : Ordinar diffrntial quations, thir ordr and dgr. Formation of diffrntial quations. Solution of diffrntial quations b th mthod of sparation of variabls, solution of homognous

More information

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH.

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH. C:\Dallas\0_Courss\03A_OpSci_67\0 Cgh_Book\0_athmaticalPrliminaris\0_0 Combath.doc of 8 COPUTER GENERATED HOLOGRAS Optical Scincs 67 W.J. Dallas (onday, April 04, 005, 8:35 A) PART I: CHAPTER TWO COB ATH

More information

TMMI37, vt2, Lecture 8; Introductory 2-dimensional elastostatics; cont.

TMMI37, vt2, Lecture 8; Introductory 2-dimensional elastostatics; cont. Lctr 8; ntrodctor 2-dimnsional lastostatics; cont. (modifid 23--3) ntrodctor 2-dimnsional lastostatics; cont. W will now contin or std of 2-dim. lastostatics, and focs on a somwhat mor adancd lmnt thn

More information

INTEGRATION BY PARTS

INTEGRATION BY PARTS Mathmatics Rvision Guids Intgration by Parts Pag of 7 MK HOME TUITION Mathmatics Rvision Guids Lvl: AS / A Lvl AQA : C Edcl: C OCR: C OCR MEI: C INTEGRATION BY PARTS Vrsion : Dat: --5 Eampls - 6 ar copyrightd

More information

Division of Mechanics Lund University MULTIBODY DYNAMICS. Examination Name (write in block letters):.

Division of Mechanics Lund University MULTIBODY DYNAMICS. Examination Name (write in block letters):. Division of Mchanics Lund Univrsity MULTIBODY DYNMICS Examination 7033 Nam (writ in block lttrs):. Id.-numbr: Writtn xamination with fiv tasks. Plas chck that all tasks ar includd. clan copy of th solutions

More information

JOHNSON COUNTY COMMUNITY COLLEGE Calculus I (MATH 241) Final Review Fall 2016

JOHNSON COUNTY COMMUNITY COLLEGE Calculus I (MATH 241) Final Review Fall 2016 JOHNSON COUNTY COMMUNITY COLLEGE Calculus I (MATH ) Final Rviw Fall 06 Th Final Rviw is a starting point as you study for th final am. You should also study your ams and homwork. All topics listd in th

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

A Quadratic Serendipity Plane Stress Rectangular Element

A Quadratic Serendipity Plane Stress Rectangular Element MAE 323: Chaptr 5 Putting It All Togthr A Quadratic Srndipity Plan Str Rctangular Elmnt In Chaptr 2, w larnd two diffrnt nrgy-bad mthod of: 1. Turning diffrntial quation into intgral (or nrgy) quation

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

INC 693, 481 Dynamics System and Modelling: The Language of Bound Graphs Dr.-Ing. Sudchai Boonto Assistant Professor

INC 693, 481 Dynamics System and Modelling: The Language of Bound Graphs Dr.-Ing. Sudchai Boonto Assistant Professor INC 693, 48 Dynamics Systm and Modlling: Th Languag o Bound Graphs Dr.-Ing. Sudchai Boonto Assistant Prossor Dpartmnt o Control Systm and Instrumntation Enginring King Mongkut s Unnivrsity o Tchnology

More information

Southern Taiwan University

Southern Taiwan University Chaptr Ordinar Diffrntial Equations of th First Ordr and First Dgr Gnral form:., d +, d 0.a. f,.b I. Sparabl Diffrntial quations Form: d + d 0 C d d E 9 + 4 0 Solution: 9d + 4d 0 9 + 4 C E + d Solution:

More information

Ultimate strength analysis & design of residential slabs on reactive soil

Ultimate strength analysis & design of residential slabs on reactive soil Ultimat strngth analysis & dsign of rsidntial slabs on ractiv soil This documnt prsnts an ovrviw of thory undrlying ultimat strngth analysis and dsign of stiffnd raft and waffl raft slabs, as commonly

More information

In this lecture... Subsonic and supersonic nozzles Working of these nozzles Performance parameters for nozzles

In this lecture... Subsonic and supersonic nozzles Working of these nozzles Performance parameters for nozzles Lct-30 Lct-30 In this lctur... Subsonic and suprsonic nozzls Working of ths nozzls rformanc paramtrs for nozzls rof. Bhaskar Roy, rof. A M radp, Dpartmnt of Arospac, II Bombay Lct-30 Variation of fluid

More information

ME469A Numerical Methods for Fluid Mechanics

ME469A Numerical Methods for Fluid Mechanics ME469A Numrical Mthods for Fluid Mchanics Handout #5 Gianluca Iaccarino Finit Volum Mthods Last tim w introducd th FV mthod as a discrtization tchniqu applid to th intgral form of th govrning quations

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

EAcos θ, where θ is the angle between the electric field and

EAcos θ, where θ is the angle between the electric field and 8.4. Modl: Th lctric flux flows out of a closd surfac around a rgion of spac containing a nt positiv charg and into a closd surfac surrounding a nt ngativ charg. Visualiz: Plas rfr to Figur EX8.4. Lt A

More information

Heat/Di usion Equation. 2 = 0 k constant w(x; 0) = '(x) initial condition. ( w2 2 ) t (kww x ) x + k(w x ) 2 dx. (w x ) 2 dx 0.

Heat/Di usion Equation.  2 = 0 k constant w(x; 0) = '(x) initial condition. ( w2 2 ) t (kww x ) x + k(w x ) 2 dx. (w x ) 2 dx 0. Hat/Di usion Equation @w @t k @ w @x k constant w(x; ) '(x) initial condition w(; t) w(l; t) boundary conditions Enrgy stimat: So w(w t kw xx ) ( w ) t (kww x ) x + k(w x ) or and thrfor E(t) R l Z l Z

More information

Introduction to Computational Fluid Dynamics: Governing Equations, Turbulence Modeling Introduction and Finite Volume Discretization Basics.

Introduction to Computational Fluid Dynamics: Governing Equations, Turbulence Modeling Introduction and Finite Volume Discretization Basics. Introduction to Computational Fluid Dynamics: Govrning Equations, Turbulnc Modling Introduction and Finit Volum Discrtization Basics. Jol Gurrro Fbruary 13, 2014 Contnts 1 Notation and Mathmatical rliminaris

More information

Integration by Parts

Integration by Parts Intgration by Parts Intgration by parts is a tchniqu primarily for valuating intgrals whos intgrand is th product of two functions whr substitution dosn t work. For ampl, sin d or d. Th rul is: u ( ) v'(

More information

Thermal and Structural Analysis of Roller Compacted Concrete (R.C.C) Dams by Finite Element Code

Thermal and Structural Analysis of Roller Compacted Concrete (R.C.C) Dams by Finite Element Code Australian Journal of Basic and Applid Scincs, 5(12): 2761-2767, 211 ISSN 1991-8178 hrmal and Structural Analysis of Rollr Compactd Concrt (R.C.C) Dams by Finit Elmnt Cod 1 Rahimi, A. and Noorzai, J. 1

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

From Elimination to Belief Propagation

From Elimination to Belief Propagation School of omputr Scinc Th lif Propagation (Sum-Product lgorithm Probabilistic Graphical Modls (10-708 Lctur 5, Sp 31, 2007 Rcptor Kinas Rcptor Kinas Kinas X 5 ric Xing Gn G T X 6 X 7 Gn H X 8 Rading: J-hap

More information

Finite Element Model of a Ferroelectric

Finite Element Model of a Ferroelectric Excrpt from th Procdings of th COMSOL Confrnc 200 Paris Finit Elmnt Modl of a Frrolctric A. Lópz, A. D Andrés and P. Ramos * GRIFO. Dpartamnto d Elctrónica, Univrsidad d Alcalá. Alcalá d Hnars. Madrid,

More information

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0 unction Spacs Prrquisit: Sction 4.7, Coordinatization n this sction, w apply th tchniqus of Chaptr 4 to vctor spacs whos lmnts ar functions. Th vctor spacs P n and P ar familiar xampls of such spacs. Othr

More information

MATHEMATICS (B) 2 log (D) ( 1) = where z =

MATHEMATICS (B) 2 log (D) ( 1) = where z = MATHEMATICS SECTION- I STRAIGHT OBJECTIVE TYPE This sction contains 9 multipl choic qustions numbrd to 9. Each qustion has choic (A), (B), (C) and (D), out of which ONLY-ONE is corrct. Lt I d + +, J +

More information

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then SYSTEM PERFORMANCE Lctur 0: Stady-tat Error Stady-tat Error Lctur 0: Stady-tat Error Dr.alyana Vluvolu Stady-tat rror can b found by applying th final valu thorm and i givn by lim ( t) lim E ( ) t 0 providd

More information

2. Background Material

2. Background Material S. Blair Sptmbr 3, 003 4. Background Matrial Th rst of this cours dals with th gnration, modulation, propagation, and ction of optical radiation. As such, bic background in lctromagntics and optics nds

More information

Higher order derivatives

Higher order derivatives Robrto s Nots on Diffrntial Calculus Chaptr 4: Basic diffrntiation ruls Sction 7 Highr ordr drivativs What you nd to know alrady: Basic diffrntiation ruls. What you can larn hr: How to rpat th procss of

More information